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1.Introduction 
 
Bootstrap distribution-free resampling technique (Efron, 1979) is frequently used 
to assess the variance of estimators or to produce tolerance areas on visualization 
diagrams derived from principal axes techniques (correspondence analysis (CA), 
principal component analysis (PCA)). Gifi (1981), Meulman (1982), Greenacre 
(1984) have done a pionneering work in the context of two-way or multiple 
correspondence analysis. In the case of principal component analysis, Diaconis 
and Efron (1983), Holmes (1985, 1989), Stauffer et al. (1985), Daudin et al. 
(1988) have adressed the problem of the choice of the relevant number of axes, 
and have proposed confidence intervals for points in the subspace spanned by the 
principal axes. These parameters are computed after the realization of each 
replicated samples, and involve constraints that depend on these samples. Several 
procedures have been proposed to overcome these difficulties: partial replications 
using supplementary elements (Greenacre), use of a three-way analysis to process 
simultaneously the whole set of replications (Holmes), filtering techniques 
involving reordering of axes and procrustean rotations (Milan and Whittaker, 
1995).  
 

We focus on a discussion about advantages and limitations of the partial 
bootstrap in PCA; the resampling context of CA is markedly different, due to the 
non-parametric setting of the contingency table analysis. However, for some 
applications, bootstrap may produce unrealistic replications. 
 
2. About bootstrap in the framework of PCA 

 
Let X be a (n,p) data table. It is usual to draw with replacement observations from 
the initial sample, observation i being characterized by its whole pattern of 
responses (i-th row of X). The appearance of twice or three times the same pattern 



is a zero-probability event that is much more influential in the multidimensional 
case. This is all the more evident in the case of Multiple Correspondence Analysis 
(MCA, or Homogeneity Analysis). When dealing with p nominal variables 
(variable s having ps categories) the number of possible different patterns is  m = 
Π ps ; in a frequently occurring case of 20 questions having each 4 categories, m 
= 420 . An alternative procedure consists of resampling by generating row vectors 
consistent with the observed covariance structure, but allowing for new patterns. 
This induces to perform a classical parametric simulation using the multivariate 
normal distribution based on the observed covariance matrix. Repeated patterns 
are thus rather improbable 
 

Various generalization of the original bootstrap have been proposed, leading to 
several smoothing or weighting schemes (a review is included in: Barbe and 
Bertail, 1995). In the context of the assessment of eigen-elements, a specific 
procedures can be used together with the classical ones: the damped bootstrap. 
Each observation is left unchanged with probability π, or replaced by any other 
observation with probability (1-π), leading to a continuous scale of resampling, 
from the unchanged sample (π = 1) up to the bootstrap (π = 1/n). It can lead to a 
perturbated set of replications in various contexts; for π<0.3, the damped 
bootstrap remains very close to the original bootstrap. In such a case, the 
probability for an observation to be absent from a replicate is, asymptotically with 
n, (1-π)e -(1-π)  instead of  e -1  in the classical bootstrap. If π  is chosen close to 1, 
the columns of X can be resampled independently, producing non parametric 
perturbation of the data.  
 

Regardless qualities of replications, it has been stressed by several authors that 
the user interested in the bootstrap variability of eigenvalues and eigenvectors is 
dealing with a non-standard application of bootstrap. Whereas replication of the 
covariance matrix is straightforward, identification and comparisons of the eigen-
elements resulting from PCA of replicated matrices leads to difficulties. 
 

Suppose that observation vector i (i-th row of X) has a contribution c(i, α) to the 
variance along axis α resulting from PCA of the observed covariance matrix. If 
the difference between two consecutive eigenvalues is such that (λα - λα+1) ≤ c(i, 
α), we may expect rotations (or exchanges) of axes depending upon the bootstrap 
weight assigned to i (for applications of perturbation theory to PCA, see for 
instance Escofier and Leroux, 1972; Benasseni, 1986). We may also expect 
reflections of axes due to the arbitrary sign of the eigenvectors. We may try to 
identify as well as possible homologous axes within the set of replicates (Milan 
and Whittaker, 1995), or choose a common reference space to position the whole 
set of replicates (partial bootstraping). The two approaches provide the user with 
distinct tolerance regions for  points location on the obtained maps. 
 



3. Partial Replications 
 
Partial bootstrap making use of projections of replicated elements on the reference 
subspace provided by Singular Value Decomposition of the observed covariance 
matrix has several advantages for data analysts. From a descriptive standpoint, 
this initial subspace is better than any subspace perturbated by a random noise. In 
fact, it is the expectation of all the pertubated subspaces (replicates). The plane 
spanned by the first two axes, for instance, provides nothing but a point of view 
on the data set. In this context, to apply the classical non-parametric bootstrap to 
PCA, one may project variable-points in the reference common subspace 
according to two procedures :  
 

• (1) Projection using a stacking of the covariance (or correlation) matrices. 
 
We use here the property that SVD of a covariance matrix C (considered as a 

data matrix) leads to diagonalization of the matrix C2, and produces the same unit 
α-th eigenvectors than the PCA of the original data matrix (with eigenvalues λα2 
instead of  λα). We can then stack the k replicates Ck of C, and project the rows of 
the stacked matrices as supplementary elements (variables) on the reference 
subspace. The analysis of C is by no means necessary since we have already 
obtained the eigen-vector from the PCA of the initial sample. Note that this 
situation is very similar to that of MCA, where the projections of replicates 
categories are obtained from the Burt contingency table which plays the same role 
as the correlation matrix.  
 

• (2) Scalar products with unit-individual eigenvectors. 
 
From the SVD equation: X=Σ λα

!  vα, u’α   , where vα and uα are respectively 
the αth  unit eigenvectors of XX' and X'X, we obtain the so-called transition 

relationships:  α
α

αλ
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designates the (n, n) diagonal matrix whose diagonal elements are the bootstrap 
weights of the replicate k, the projection of the k
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 th replicate of the p variables is 

given by the p-vector uα(k) such that : : α
α

αλ
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Approaches (1) and (2) coincide in the case of PCA on covariance matrices, but 

approach (2) is rather unsuitable in the case of PCA on correlation matrices. In 
both situations, it is easy to compute replicated variances along the reference axes 
(which evidently are not replicates of the eigenvalues). 
 
 



4. Results 
 
In order to compare these replication schemes, we generate a series of samples Sm 
(size m=30, to m=200) from a multinormal distribution F defined by its (6x6) 
covariance matrix C. We simulate the sampling variability of Sm through two 
different procedures : (i) generation of other samples from C, analogous to Sm , 
(ii) bootstrap replications of Sm. How relevant for F are the statements built from 
Sm ?  In both cases,  PCA of Sm provides a unique and common reference space. 
 

(i ) The sampling distribution of the jth column coordinates ϕmjα  is computed as 
follows : K independent samples Smk are drawn from matrix C; matrices Cmk are 
stacked as supplementary elements in the PCA of Sm. 
 

Figures (1) and (2) represent the sample variations of ϕm1 and ϕm6 in the 
principal plane (α=1,2) , for samples S30 and S150,  respectively. 
 
 

                 
Figures (1) and (2): sampling distribution of col. 1 and 6 on first 2 
principal components, for original samples S30 and S150, respectively 

 
 

(ii) Three replication schemes are then carried out in order to assess the 
variability of the column position in the PCA of Sm : partial bootstrap, damped 
bootstrap (π varying from 0.1 to 0.9), and damped bootstrap with fixed rows. 
 

Figures (3) and (4),  show that the partial bootstrap variability is roughly 
equivalent to the sampling variability represented above However the 
distributions of columns points are centered on the original ϕmjα. instead of the 
projected columns of C as in figures (1) and (2). The latter are included in the 
convex hull of the replicated columns points. 
 



                 
Figures (3) and (4) : partial bootstrap distribution of replicated col. 1 and 6 on 
the first 2 principal components, original samples S30 and S150, respectively 

 
 

In fact, one can easily see in table (5) that the partial bootstrap total variance of 
the ϕmjα  is almost the same as the sampling total variance in all cases we report, 
although slightly optimistic. 
 

 
Sample size 30 50 75 100 125 150 200 

Simulation  0.3871  0.2184  0.1374  0.1090  0.0929  0.0787  0.0569 

Part. Bootstrap  0.3726  0.2054  0.1297  0.1048  0.0895  0.0679  0.0549 
Table (5) : total sampling and bootstrap variance of column coordinates (axis 1,2,3)  

 
 

Figure (6) shows how partial damped bootstrap behaves (m=100). The fixed-
row scheme total variance tends to that of the bootstrap when values of π 
decrease, as stated above. Column-independent replication scheme gives estimates 
of the total variance whose range contains the classical partial bootstrap value. 
 
 

 
Figure (6) : total damped bootstrap variance of col. coordinates, acc. to π 

 
 



Conclusion : partial bootstrap gives a fair estimate of the sample variation of 
eigen-elements. Damped bootstrap leads to a representation of this variability 
which is coherent with the preceding ones, and may, in other sampling schemes, 
be more accurate. It may also be used to overcome the specific penalty that 
bootstrap brings in multiple correspondence analysis, due to the irrealistic 
replication of individuals. 
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