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Abstract: The Kohonen self organizing maps (SOM) can be viewed as a visualisation tool that performs a sort 

of compromise between a high-dimensional set of clusters and the 2-dimensional plane generated by some 

principal axes techniques. The paper proposes, through Contiguity Analysis, a set of linear projectors providing a 

representation as close as possible to a SOM map. As expected, owing to the non-linear character of the 

representation, such projectors will only concern local parts of the SOM maps. In so doing, we can obtain an 

idea of the variability of  points representing words via a standard partial bootstrap procedure.  

 

1. Introduction 

For many users of visualisation tools, the Kohonen self organising maps (SOM) outperform 

both usual clustering techniques and principal axes techniques (principal components 

analysis, correspondence analysis, etc.).  On the one hand, the displays of identifiers of words 

(or text units) within rectangular or octagonal cells allow for clear and legible printings. On 

the other hand, the SOM grid, basically non-linear, can be viewed as a compromise between a 

high-dimensional set of clusters and the 2-dimensional plane generated by any pairs of 

principal axes. One can regret however the absence of assessment procedures and of valid 

statistical inference as well.  The paper proposes, through Contiguity Analysis (briefly 

reminded in section 2),  a set of linear projectors providing a representation as close as 

possible to a SOM map (section 3 and 4). An example of application is given in section 5. As 

expected, owing to the non-linear character of the representation, such projectors will only 

concern local parts of the SOM maps. In so doing, we can obtain an idea of the variability of  

points representing words via a standard partial bootstrap procedure. We can then provide the 

SOM maps with  the projection of confidence areas (e.g. ellipses) around the location of 

words (section 6).  

2. Brief reminder about contiguity analysis 

Let us consider a set of multivariate observations, (n observations described by p variables, 

leading to a (n,p) matrix X), having an a priori graph structure. The n observations are also 

the n vertices of a symmetric graph G, whose associated matrix is M (mii' = 1 if vertices i and 

i' are joined by an edge, mii' = 0 otherwise).  We denote by N the (n,n) diagonal matrix having 

the degree of each vertex i as diagonal element ni (ni stands here for nii’). y is the vector whose 

i-th components is yi. Note that:  ni = i'
 mii' . U designates the square matrix such that uij = 1 

for all i and j. 

2.1. Local variance  vc(y) of a variable  y 

y  being a random variable taking values on each vertex i of a symmetric graph G, the local 

variance will then be defined as: 

It is the average of the adjacent values of vertex i. 
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Note that if G is a complete graph  (all pairs (i,i') are joined by an edge), v*(y)  is nothing but 

v(y), the classical empirical variance. When the observations are distributed randomly on the 

graph, both v*(y) and v(y) are estimates of the variance of y. 

The contiguity ratio (analogue to the contiguity ratio of Geary, 1954), is written:   

c*(y) = v*(y)  / v(y), or :   c*(y)   =   y'(I - N-1M)’ ( I - N-1M) y  /  y' (I – (1/n)U) y 

 

2.3 Local Principal Component  Analysis 

The contiguity ratio can be generalized :  

i) to different distances between vertices in the graph,  

ii) to multivariate observations (both generalizations are dealt with in: Lebart, 1969). 

This section is devoted to the second generalization: the analysis of sets of multivariate 

observations having an a priori graph structure. Such situation occurs frequently in 

geography, ecology, geology. The multivariate analogue of the local variance is now the 

local covariance matrix, whose elements cov(j,j') are given by (using the previously defined 

notation): 
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If X designates the (n,p) data matrix giving the values of the p variables for each of the n 

vertices of the graph described by its associated matrix M, the local covariance matrix can be 

written : 

V*  =  (1/n) X'( I - N-1M)’ ( I - N-1M) X 

The diagonalization of the corresponding local correlation matrix  (Local Principal 

Component Analysis) produces a description of the local correlations, which can be 

compared to the results of a classical PCA  performed with the global correlation matrix (see: 

Aluja and Lebart, 1984). Comparisons between covariance or correlation matrices (local and 

global) is usually done through Procustean Analysis (see: Gower and Dijksterhuis, 2004). 

If the graph is made of k disjoined complete subgraphs, V* coincide with the classical 

"within covariance matrix" used in linear discriminant analysis. 

If the graph is complete (associated matrix = U, with uij = 1 for all i and j), then V* is the 

classical covariance matrix, and the matrix : ( I - (1/n) U) is idempotent. 

               V* = V  =  (1/n) X'( I - (1/n) U)’ ( I - (1/n) U) X   =  (1/n) X' ( I - (1/n) U) X 

 

 2.4. Contiguity Analysis 

Let u be a vector defining a linear combination u(i) of the p variables for vertex  i: 

                              u(i) = j uj yij  =  u'yi 

The local variance of the artificial variable u(i) is then : 

                              v*(u)  =  u' V* u  

The contiguity coefficient of this linear combination can be written : 

                             c*(u)   =  u' V* u  / u' V u                          

where V is the classical covariance matrix of vector y. 

The search for u that minimizes c*(u) produces functions having the properties of "minimal 

contiguity": these functions are, in a sense, the linear combinations of variables the more 

continuously distributed on the graph.  

Instead of assigning an observation to a specific class, (as it is done in classical discriminant 

analysis) these functions allows one to assign it in a specific area of the graph. Therefore, 

this technique (designated as Contiguity Analysis)  can be use to discriminate between 

overlapping classes.  
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3. SOM maps and external associated graph 

 

The self organizing maps (SOM maps) proposed by Kohonen (1981) aim at clustering a set of 

multivariate observations. The obtained clusters are displayed as the vertices of a rectangular 

(chessboard like) or octagonal graph. The distances between vertices on the graph are 

supposed to reflect, as much as possible, the distances between clusters in the initial space. 

 

3.1 Principles of the algorithm :  

The size of the graph, and consequently, the number of clusters are chosen a priori (for 

example: a square grid  with 5 rows and 5 columns, leading to 25 clusters). The algorithm is 

very similar to the McQueen algorithm (1967) in its on line version, and to the k-means 

algorithm (Forgy, 1965) in its batch version.  This technique can be sketched as follows. Let 

us consider n points in a p-dimensional space (rows of the (n, p) matrix X). At the outset, to 

each cluster k is assigned a provisional centre Ck with p components (e.g.: chosen at random, 

or among the first elements). For each step t, the element  i(t) is  assigned to its nearest 

provisional centre Ck(t). Such centre, together with  its neighbours on the grid, is then 

modified according to the formula:  

Ck(t+1)=Ck(t)+ (t) (i(t)-Ck(t)) 

In this formula, (t) is an adaptation parameter (0<  < 1) which is a (slowly) decreasing 

function of t, as those usually encountered in stochastic approximation algorithms. This 

process is reiterated, and eventually stabilizes, but the partition obtained generally depends on 

the initial choice of the centres. In the batch version of the algorithm, the centres are modified 

only after a complete pass of the data set. 

3.2 Graph associated with a SOM maps 

Figure 1 represent a stylised symmetric matrix (70, 70) M0 associated to a partition of n=70 

elements in k=8 classes (or clusters). Rows and columns represent the same set of n elements 

(elements belonging to a same class of the partition form a subset of consecutive rows and 

columns). The graph consists in a series of 8 cliques. All the cells of the black diagonal sub-

matrices contains the value 1. All the cells outside these diagonal sub-matrices contains the 

value 0 . 

 

Figure 1 . Stylised incidence matrix M0 of the graph associated with a simple partition 

(all the cells in the white [resp. black] areas contain the value 0 [resp. 1]  ) 

The 8 classes of the previous partition have been obtained through a SOM algorithm from a 

square 3 x 3 grid (with an empty class). The matrix of figure 1 does not take into account the 

topology of the grid: links between elements do exist only within clusters. 
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Figure 2 . Stylised incidence M1 matrix of the graph associated with a SOM map 

(all the cells in the white [resp. black] areas contain the value 0 [resp. 1]  ) 

In figure 2, two elements i and j are linked (mij = 1) in the graph if they belong to a same 

cluster, or if they belong to contiguous clusters. Owing to the small size of the SOM grid 

(figure 3), the diagonal adjacency is not taken into account. (e.g.: elements belonging to 

cluster 7 are considered as contiguous to those of clusters 4 and 8, but not to the elements of 

cluster 5). 

 

Figure 3. The a priori SOM grid. 

Similarly to matrices M0 and M1, a matrix M2 can be defined, that extends the definition of 

the edges of the graph to diagonal links. In the simple example of figure 3, the elements of 

cluster 7, for example, are considered as contiguous to the elements of clusters 4, 8, and  5. 

4. Linear projectors onto the best SOM plane 

The matrices M0 and M1, and M2 can be easily obtained as a by product of the SOM 

algorithm. 

4.1 Contiguity analysis using the graph G0 the associated matrix of which is M0:  

In this case, the local variance coincide with the “within variance”, and the result is a classical 

linear discriminant analysis of Fisher (LDA). In the plane spanned by the two first principal 

axes, the clusters are optimally located in the sense of the LDA criterion. 

4.2 Contiguity analysis using the graphs G1 or G2 (associated matrices M1, or M2):  

In those cases, the  principal planes strive to reconstitute the positions of the clusters in the 

SOM map. In the initial p-dimensional space, the SOM map can be represented by the graph 

whose vertices are the centroids of the clusters. Those vertices are joined by an edge if the 

corresponding clusters are contiguous in the grid used in the algorithm. This graph in a high 

dimensional space will be partially or totally unfolded by the contiguity analysis. The 

following example will show the different phases of the procedure. 

 

5. An example of application 

An open-ended question has been included in a multinational survey conducted in seven 

countries (Japan, France, Germany, Italy, Nederland, United Kingdom, USA) in the late 

nineteen eighties (Hayashi et al., 1992). 
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The respondents were asked : "What is the single most important thing in life for you?" . This 

open question was followed by the probe: "What other things are very important to you?".The 

illustrative example is limited to the British sample. The counts for the first phase of numeric 

coding are as follows: Out of 1043 responses, there are 13 669 occurrences (tokens), with 

1 413 distinct words (types). When the words appearing at least 25 times are selected, there 

remain 9815 occurrences of these words, with 88 distinct words.   

 

 

Figure 4. A (3 x 3) Kohonen map applied to the words used in the 1043 responses 
 

In this example we focus on a partitioning of the sample into 9 categories, obtained by cross-

tabulating age (3 categories) with educational level (3 categories). The 9 identifiers combine 

age categories (-30, 30-55, +55) with educational levels (low, medium, high).  

Note that the SOM map (figure 4) provides a simultaneous representation of words and of 

categories of respondents. This is due to the fact that the input data are the coordinates 

provided by a correspondence analysis of the lexical contingency table cross-tabulating the 

words and the categories. 

Figure 5 represents the plane spanned by the two first axes of the contiguity analysis using the 

matrix M1. We can check that the graph describing the SOM map (the vertices of which C1, 

C2, …C9 are the centroids of the elements of the corresponding cells of figure 4), is, in this 

particular case, a satisfactory representation of the initial map. The pattern of the nine 

centroids is similar to the original grid exemplified by figure 3.  
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Figure 5. Principal plane of the contiguity analysis using matrix M1. The points C1, C2, …C9 represent the 

centroids of the 9 clusters derived from the SOM map. 

 

 
 

Figure 6. Principal plane of the contiguity analysis using matrix M1, with both the centroids of the 9 clusters and 

their convex hulls. 

 

The background of figure 6 is identical to that of figure 5. It contains in addition the convex 

hulls of the nine clusters C1, C2, …, C9.. Each of those convex hulls correspond exactly (if 

we except  some double or hidden points) to a cell of Figure 4. We note that these convex 

hulls are relatively well separated. In fact, figure 6 contains much more information than 
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figure 4, since we have now an idea of the shapes and sizes of the clusters, of the degree to 

which they overlap. We are now aware of their relative distances, and, another piece of 

information missing in figure 4, we can observe the configurations of elements within each 

cluster. 

6. The assessment of Kohonen maps through partial bootstrap 

We are provided at this stage with a tool allowing us to explore a continuous space. We can 

take advantage of having a projection onto a plane (and possibly onto a higher dimensional 

space, although the outputs are much more complicated in that case) to project the bootstrap 

replicates of the original data set. This can be done in the framework of a partial bootstrap 

procedure. In the context of principal axes techniques (such as singular values decomposition, 

principal component analysis, correspondence analysis, and also contiguity analysis), 

Bootstrap resampling techniques (see: Efron and Tibshirani, 1993) are used to produce 

confidence areas on two-dimensional displays. The bootstrap replication scheme allows one 

to draw confidence ellipses for both active elements (i.e.: elements participating in building 

principal axes) and supplementary elements (projected a posteriori). 

 

 
 

Figure 7. Bootstrap ellipses of confidence of the 5 words: freedom, health, money, peace, wife in the same 

principal contiguity plane as in figure 5 and 6. 

 

In the example of the previous section, the words are the rows of a contingency table. The 

perturbation of such table under a bootstrap re-sampling procedure leads to new coordinates 

for the replicated rows. Without re-computing the whole contiguity analysis for each 

replicated sample (conservative procedure of total bootstrap), one can project the replicated 

rows as supplementary elements on a common reference space, exemplified above by figures 

5 and 6. Always on that same space, figure 7 shows a sample of the  replicates of five points 

(small stars visible around the words freedom, health, money, peace, wife) and the confidence 

ellipses supposed to contain approximately 90 % of these replicated points. Such procedure of 

partial bootstrap (see, e.g., Lebart, 2004) gives satisfactory estimates of the relative 

uncertainty about the location of points. Although the background of figures 6 and 7 are the 

same, it is preferable, to keep the results legible, to draw the confidence ellipses on a distinct 
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scattering diagram. It can be seen for instance that the words freedom and money, both 

belonging to cluster c4, have different behaviours with respect to the re-sampling variability. 

The location of freedom is much more fuzzy. That word could belong to other neighbouring 

clusters as well. 

 

7. Conclusions 

We have intended to immerse the self organizing maps, obtained through an algorithm often 

viewed as a black box, into an analytical framework (the linear algebra of contiguity analysis) 

and into an inferential setting as well (re-sampling techniques of bootstrap). That does not put 

into question the undeniable qualities of clarity and readability of the SOM maps. But it may 

perhaps help to assess the scientific status of these maps: like most exploratory tools, they 

may help to uncover rapidly and at low cost some features and patterns. However, they should 

undoubtedly be complemented by other statistical procedures if  deeper interpretation is 

needed.  
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