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Summary: Correspondence Analysis of contingency tables (CA) is closely related 
to a particular Supervised Multilayer Perceptron (MLP) or can be described as an 
Unsupervised MLP as well. The unsupervised MLP model is also linked to various 
types of stochastic approximation algorithms that mimic the cognition process 
involved in reading and comprehending a data table.  

 
1. CA: a tool at the junction of many different methods 
Correspondence Analysis of contingency tables (CA), independently discovered by 
various authors, can be presented from nearly as many points of views. It can be viewed, 
for example, as a particular case of both Linear Discriminant Analysis (LDA) (performed 
on dummy variables) and Singular Value Decomposition (SVD) (performed after a 
proper scaling of the original data). After the seminal papers of Guttman (1941), Hayashi 
(1956) and Benzécri (1969a), various presentations of CA can be found in the available 
literature (see, for instance, Lebart et al. (1984), Greenacre (1984), Gifi (1990), Benzécri 
(1992), Gower and Hand (1996)). 
In the context of neural networks - cf. the recent reviews of this fast-growing field by  
Cheng and Titterington (1994), Murtagh (1994), Ripley (1994) - Correspondence 
Analysis is also at the meeting point of many different techniques.  
It can be described as a particular Supervised Multilayer Perceptron  (MLP, section 2) 
(in that case, the input and the output layers are respectively the rows and the columns of 
the contingency table) or as an Unsupervised Multilayer Perceptron (UMLP, section 3) 
(in such a case the input layer, and the output layer as well, could be the rows, whereas 
the observations - also named examples, or elements of the training set - could be the 
columns of the table). In both situations, the networks make use of the identity function 
as a transfer function. More general transfer functions might lead to interesting non-
linear extensions of the method. CA can also be obtained from Linear Adaptive Networks 
(section 4), a series of methods closely related to stochastic approximation algorithms. 
 

2. A particular supervised Multilayer Perceptron  

2.1 Reminder about the Multilayer Perceptron 
Equivalence between Linear Discriminant Analysis and supervised Multilayer 
Perceptron (when transfer functions are identity functions) has been proved by Gallinari 
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et al. (1988) and generalized to the case of more general models (such as non-linear 
discriminant analysis) by Asoh and Otsu (1989).  
A general framework (see, e.g., Baldi and Hornik (1989)) can deal simultaneously with 
the supervised and the unsupervised cases. 
Let X be the (n, q) matrix whose n rows contain the n observations of an input q-vector, 
and let Y be the (n, p) matrix containing (as rows) the n observations of an output p-
vector. 
A designates the (q, r) matrix of weights (ajm)  (see fig.1) before the hidden layer, and B 
the (r, p) matrix of weights (bmk) following it (r ² p and r ² q).  
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Fig. 1: Perceptron with one hidden layer (i-th observation) 

 
A perceptron with a unique hidden layer is a model of the form: 
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In the case of identity transfer functions (Φ and Ψ ) and null constant terms, the model 
collapses to the simpler form: 
 

   (2) ikijjm

c

1m
mk

p

1j
ik

p

1j
ijjm

c

1m
mkik exabexa by +








=+





















= ∑∑∑∑

====

 
2.2 Estimating the parameters 
The np equations (2) are summarized by:   
    Y = XAB+ E.      (3) 
Denoting by MT the transpose of matrix M, the loss function to be minimized can be 
written:  

f =trace ETE = trace (Y - XAB)T (Y - XAB),  
under the constraint: 



    BBT  =  Ir   (Ir  is the identity (r, r) matrix).  
This last constraint is introduced to remedy the indeterminacy of the model, since for any 
non-singular (r, r) matrix H, AH and H-1B are solutions of the minimization problem as 
well as A and B. 
A and B could be estimated through a back-propagation algorithm, complemented with 
an orthonormalization of the rows of B at each step.  
Since we are dealing here with the simpler case of identity transfer functions, we will 
focus on a direct analytical solution. 
The minimization of f  leads to equations  (4)  and  (5):  
    BYTX = ATXTX,      (4) 
    YTXA = BTL      (5) 
(L is an (r, r) matrix of Lagrange multipliers). 
Equations (4) and (5), together with the previous constraint, lead to the following 
equation: 
    MBT = BTL,  
the matrix M being defined as: 

     M = YTX(XTX)-1XTY    (6) 
We get a new expression for the criterion f:  
    f = trace YTY - trace L.  
Minimizing f is then equivalent to maximizing trace L.  
We can easily deduce from the preceding relationships and from this new criterion that L 
is a diagonal matrix containing the r largest eigenvalues of M as diagonal elements, the r 
rows of B being the corresponding unit eigenvectors.  
We can then derive the value of A:  

    A = (XTX)-1XTYBT 
This formula provides a generalization of that obtained in the simultaneous multiple 
regression, since (3) can be written: 
    Y = XW+ E,      (with W= AB).  
This generalization concerns the new situation where the matrix of coefficients W 
undergoes a constraint of rank.  
Note that:  

    P = X(XTX)-1XT   

is the (idempotent) projector onto the subspace spanned by the columns of X.  
Hence :  
    M = (PY)T (PY). 
Thus, the Multilayer Perceptron performs a projected principal axes analysis of Y, the 
projection being performed onto the space spanned by the columns of X. This analysis is 
also a projected Principal Component Analysis, if Y is centered columnwise. 
 

2.3 The case of binary disjunctive data 
When Y and X are binary disjunctive tables (dummy variables describing two partitions 
of the n observations into p and q classes), the matrix C defined as: 



    C = YTX  
is the (p, q) contingency table crossing the two partitions.  
The matrix Dq (resp. Dp) such that: 
    Dq = XTX    (resp. Dp = YTY)  
is the diagonal matrix whose q (resp. p) diagonal elements are the counts of the q classes 
(resp. p classes).  
This particular Multilayer Perceptron, whose training entails the diagonalization of the 
matrix M: 
     M = CDq

−1C' ,  

performs a Non Symmetrical Correspondence Analysis   (Lauro and D'Ambra (1984)) of 
the contingency  table C.  

A classical Correspondence Analysis would imply a diagonalization of the matrix M* 
such that : 

     M* = Dp
−1CDq

−1C'
Note that M* involves symmetrically the two sets (p columns of X on the one hand, q 
columns of Y on the other). 
The Multilayer Perceptron will coincide with Correspondence Analysis if Dp is a scalar 
matrix (all the p classes have the same number of elements) or if the output matrix Y has 
been properly re-scaled during a preliminary step into Y  according to the following 
formula:  

ˆ 

    
    
ˆ Y = YDp

−1/ 2  

The new matrix to be diagonalized : 
    Ms = D p

−1 /2CD q
−1C' Dp

−1/ 2  

has the same eigenvalues as M*, and has eigenvectors that can be easily derived from 
those of M*. 
 

3. An unsupervised Multilayer Perceptron  
In auto-associative neural networks, the output Y coincides with the input X. The 
common value of X and Y is denoted by Z. 
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Fig. 2: Auto association strangulated network 

 



It is an apparently trivial situation. In fact, these networks are of great interest if the 
hidden layer is narrower than the others, thus realizing a compression of the input signal 
(fig. 2).  
Bourlard and Kamp (1988), Baldi and Hornik (1989) have stressed the link between 
SVD - and consequently Principal Component Analysis (PCA) - and these particular 
networks. The proof is straightforward if we replace both Y and X by Z in the formulas 
obtained in the previous section.  
In this context, the matrix M given by the equation (6) is nothing but the product-
moment matrix ZTZ.  
In this setting, the equivalence with Correspondence Analysis is obtained if Z is derived 
from a contingency table K according to the transformation (with usual notations):  

           
  
zij =

kij − ki.k. j

ki .k. j
    (7) 

Note that the nature and the size of the input data involved in the two approaches of 
section 2 and 3 are radically different.  
The network of section 2 is "fed" by n individual observations. It learns how to predict 
the output category corresponding to observation i, from the knowledge of its input 
category.  
The network of section 3 is fed simultaneously by q observations of p categories (rows of 
Z) or equivalently by p observations of q categories (columns of Z). It learns how to 
summarize the input information.  
Note that section 3 deals with properties common to Principal Component Analysis and 
Correspondence Analysis.  
 

4. A Linear Adaptive Network  

4.1 Brief review of some computational techniques involved in CA 
Several distinct computational algorithms could be involved in Correspondence 
Analysis: Reciprocal averaging, iterated power, QR and QL algorithms, Jacobi method 
and its generalizations, Lanczos method, as well as other classical numerical procedure 
for SVD, (see, for example, Parlett (1980)).  
The use of Back-Propagation method and other techniques usually associated with 
Multilayer Perceptron provides new numerical approaches and a better insight into the 
method. The unsupervised MLP model is also closely related to various types of 
stochastic approximation algorithms that could roughly outline the cognition process 
involved in perusing a data table. These algorithms are able to tackle huge data sets like 
those encountered in Automatic Information Retrieval.  
Benzécri (1969b), Krasulina (1970) have proposed independently stochastic 
approximation algorithms for determining the largest eigenvalues of the expectation of a 
random matrix. Lebart (1974) has given a numerical proof of the convergence of 
Benzécri algorithm, and shown its interest in the case of sparse data matrices, such as 
those involved in Multiple Correspondence Analysis. Oja and Karhunen (1981) have 
proposed similar algorithms, adding new proofs and developments, reinforced by the 
results of Kushner and Clark (1978). The first mention of neural networks can be found 



in Oja (1982), who has proposed since then a wide variety of algorithms (see: Oja 
(1992)). 
 
4.2 Basics of stochastic approximation algorithms 
From our point of view, the basic idea is as follows:  
X being the (n,p) matrix of properly re-scaled data, the product moment matrix XTX can 
be written as a sum of n terms Ai. 

       i

n=i

1=i

T A =XX ∑

 

with: 

       Ai = x ixi
T  ,    (xi being the ith column of XT) 

The classical iterated power algorithm can then be performed using this decomposition, 
(cf. Wold (1966)) taking advantage of the possible sparsity of the data matrix X.  
Starting from a random vector u0, the step k of this algorithm, after setting uk = 0, 
consists of n assignments such as: 
 for   i = 1   to   i = n,    do :       uk  ← uk  +  Ai uk-1   (8) 
 
The vector uk remains unchanged during the whole step k.  
We can try to improve the algorithm by modifying the estimate of uk during each 
assignment, according to the process: 
 for   j= 1   to   j =  °,    do :       uj  ← uj-1  +  γ(j) Ai(j) uj-1  (9) 

where γ(j)  is a gain parameter. 
During each step k,  the index  i(j)  of the matrix A takes values 1 to n .  
At step k : i(j) = j - (k-1)n .  
To ensure the convergence of uj towards the largest eigenvector of XTX , the series γ(j)  
must diverge whereas the series γ 2 ( j )   must converge. The series γ(j)  could be chosen 
among series closely related to the harmonic series  such as:   γ(j)  = a/(b+j) . 
In fact, during step k, the iterated power algorithm (algorithm (8) ) involves  the 
operator: 
                (10) Aii∑
whereas the stochastic approximation algorithm (algorithm (9)) replaces the operator 
(10) with the operator: 
     

  
I + γ ( j)Ai ( j )( )j∏     (11) 

 
4.3 Stochastic approximation versus iterated power 
Actually, if the terms of the series(j)  are small enough, the two operators defined by (10) 
and (11) have similar unit eigenvectors. However, if the terms of the series γ(j)  are not 
too small, the operator (11) may have more separated eigenvalues, inducing a faster 



convergence of algorithm (9). Therefore, there is a trade-off between two options: fast 
convergence towards approximate eigenvectors, or slower convergence towards the 
exact values. 
After several steps, because of the decrease in the values of γ(j) , operator (10) is 
definitely superior to operator (11).  
In this sense, algorithm (9) can be considered as a mere technique of acceleration of the 
algorithm (8) (Lebart (1982)).  
Unlike the algorithm (8), (9) depends on the order of the Ai within the sequence (A1, A2, 
..., Ai, ..., An).  It can be shown that the speed of convergence can be improved if two 
consecutive sequences are read in reverse order (Lebart (1974)). 
Both linear adaptive networks corresponding to algorithms (8) and (9) can produce 
simultaneously several eigenvectors, provided that orthonormalizations are carried out 
with a frequency that depends on the available precision. It is by no mean necessary to 
orthonormalize the estimates of eigenvectors at each reading (i.e. for each value of the 
index j  when using the algorithm (9)). 
It must be stressed that stochastic approximation algorithms such as algorithm (9) 
converge very slowly, their convergence being based on the divergence of the harmonic 
series. Iterated power algorithms (8) (whose firts steps could be speeded up by using 
stochastic approximation (9)) perform well if they confine themselve to finding a s-
dimensional space Vs containing the t first eigenvectors (with:  t << s). Then, the t 
dominant eigenvectors (and their corresponding eigenvalues) can be efficiently 
computed through a classical diagonalization algorithm applied to the (s, s) product-
moment matrix obtained after projection onto the subspace Vs.  
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