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Abstract 
 

This paper contains three parts. The first part consists of a brief review of the 
discrimination techniques used when dealing with large arrays of sparse qualitative data. 
The second part presents the "Regularized Nearest Cluster Method", an efficient and 
versatile technique of discrimination, well adapted to this kind of data. This technique is  
compared to some other existing methods likely to be used in similar contexts. The third part 
briefly  discusses the interest of these methods in the domain of textual data analysis. 

 
 

1. BASIC CONCEPTS AND NOTATIONS 
 
Let  p designate the number of variables, n the number of individuals,  and K  the number 

of categories to which belong these individuals. 
The most classical discrimination techniques are based on the normal distribution, whose 

density function is written, µk and Σk designating the theoretical mean vector and covariance 
matrix of class k :  

 

fk(X) = (2π)
-p/2 | |Σk

-1/2
 exp{-1/2(X-µk)'Σk-1(X-µk)} 

 

Replacing the theoretical values by their estimates, one can derive the discriminant scores 
and the Mahalanobis distances : 

 

dk(X) =  (X-mk)' Sk-1(X-mk)  +  ln| |Sk   (discriminant score for group k, when the    
prior probabilities of the groups are equal) 

 

dk(X) =  (X-mk)' S-1(X-mk)   (global Mahalanobis distance, directly related with     
      linear discriminant analysis) 

 
dk(X) =  (X-mk)' Sk-1(X-mk)   (local Mahalanobis distance, corresponding to  

     quadratic discriminant anaysis) 



 with Sk  = (1/nk) , for xi ∈ category  k, containing nk individuals. 
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  mk  = (1/nk) Σxi,    for xi ∈ category  k. 

  m  = (1/n) Σxi,       for all xi ,          with  n = Σk nk 
 
In the regularised discriminant method as proposed by J.Friedman [7], a new estimate 

Sk(λ,γ)  is computed for each local covariance matrix,  rendering it similar to the global 
covariance matrix (role of weight λ), and also to a multiple of the identity matrix (role of  
weight γ ) : 

 Sk(λ,γ) =  (1 - γ ) Sk(λ) + (γ/p)  tr [Sk(λ)] I 

   with   Sk(λ)  =    
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See also [6] for a different technique of estimation of the parameters λ  and γ. 
These techniques provide interesting results in the case of small or medium-sized data sets, 

when the initial problem is ill-posed (n ≤ p) or poorly posed (n >p, but still comparable to p). 
In the case of large sparse matrices, however, the scale of the phenomenon creates new 

problems : there is a need for understanding what happen in the high-dimensional spaces...  
Is it worthwhile  keeping all the principal axes ? Is there some kind of filtering adapted to  

high-noise level data ? 
 
2. REGULARIZATION THROUGH DISCARDING THE LAST PRINCIPAL  
    AXES 

From a numerical point of view, diagonalizing is a much safer operation than computing 
inverse matrices. Perturbation theory proves that the stability of eigenvectors is a function of 
the differences between consecutive eigenvalues. In this context, it could be advisable to 
discard the dimensions corresponding to the smallest eigenvalues, which are very sensitive 
to minor changes in the input data set [3] . 

The purpose of sections  2 and 3 is to contribute to discriminant analysis in this setting. 
 

2.1 Principal Axes of the whole sample 
 

The reduction technique occurring during the first step depends on the nature and the 
statistical properties of the input data. In the example presented throughout this paper, this 
first phase consists in a Correspondence Analysis (C.A.), adapted to the sparse contingency 
tables under study  (Note that a regular Singular Value Decomposition could be used as 
well). 

The new coordinates of individual i on the principal axis r of the whole sample eigen-
analysis, are designated by yri  , .  

 



   yri   =  u'r (xi-m),   

where ur is the rth normalized eigenvector of S corresponding to the eigenvalue αr, and the 

rth column of the (p,R) matrix U,    (R is the number of selected eigenvalues). 

The usual squared euclidean distance of any point i to the centroid k (including those points 
not belonging to category k and those not belonging to the learning sample) is written as : 

  d2k(i) =     Σj (xij -mkj)2).        (1) 

This distance is written for the new base : 

 d2k(i) =     Σr (yri -y
- kr)2),    with  y- kr   =   u'r (mk-m)   (2) 

whereas the global Mahalanobis squared distance (linear discriminant analysis) could be 
written as : 

D2k(i) =     Σ r (yri -y
- kr)2/αr),           (3) 

D2k(i)    is regularized if R ≤ p'≤ Min (n,p)  (p' designates the rank of the data matrix) 
 
2.2 Principal axes of sub-groups 
 

For each sub-group k, the (R,R) covariance matrices are computed separately, the input 
data being the coordinates computed previously. 

  
The new coordinates of an individual on the principal axis s of the  eigen-analysis (a 

Principal Component Analysis) performed within the group k are : 
 

zski   =  v'sk (yi-y
-  k),   

 
where vsk is the sth normalized eigenvector of U'SkU corresponding to the eigenvalue βsk. 
 

This formula of projection onto  axis   s   holds also for the points not belonging to 
category k (supplementary  or illustrative elements, according to the terminology of 
descriptive multivariate analyses). 

 
One can find again the same usual distances computed in each of these K new bases, for 

any point i, to the centroid k (including those not belonging to category k and those not 
belonging to the learning sample). 



 

  d2k(i) =     Σs  (zski - z
- sk)2,             (4) 

(S being the number of selected axes at this step). 

whereas the local Mahalanobis distance (quadratic discriminant analysis) could be written : 

  D2k(i) =    Σs (zski - z
- sk)2/βsk ,       (5)  

Such distance is "regularised", if R ≤ p'≤ Min(n,p)  (p' designates the rank of the data 
matrix) and could be said to be "doubly regularised"  if  S < R, (see remark below). 

  

Note that if  S = R = p, the distances given by formulas (1), (2),and by the K formulas (4) 
(there are in fact K different orthonormal bases, therefore K different formulas) are equal. 

 
The empirical study which follows will focus on the effects of the dimensions of these 

subspaces on the misclassification rates, in both learning and test samples. 
 
Remark: 
There are in fact two ways of computing regularized Mahalanobis distances by truncation 

of the p-dimensional space : 
 
1- To reduce the global dimensions of the global space by keeping the R first 

eigenvectors, then to re-compute for each value of R the K classes covariance matrices.  
K diagonalizations (or inversions, if possible) are then necessary at each step. This is the 

solution adopted throughout this paper. 
2 - To compute (and diagonalize) each class covariance matrix Sk in the full initial p-

dimensional space, and discard the last axes for each group separately. This option does not 
imply a re-computation of the eigenvalues at each step. However, these new Mahalanobis 
distances are not computed in a common space, and cannot be compared as in the usual 
framework of quadratic discriminant analysis. 

 
 
2.3 The example data set 
 
The data set that will serve as example throughout the various sections of this paper 

consists of a (634 x 83) sparse binary table containing 4039 non-zero elements (4039 
occurrences of p =83 words used in n = 634 responses to an open-ended question).  

 
The set of the 634 rows (respondents) is broken down into three categories of age. The 

purpose is to classify these categories from the words used in  answering the open question. 
The real scope of the problem is presented in section 4.  

 
Our current criterion of goodness of discrimination  is the percentage of successes, which 

will be systematically computed for both test samples and learning samples. Throughout this 
paper, the test sample consists of one third (211 individuals) of the full sample drawn at 



random from the whole sample. 
The first step is a change of the axes performed through C.A. Special algorithms adapted 

to the sparsity of the matrix have been developed  [10]   and could be used.  
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Figure 1. Eigenvalues of the (83,83) sparse matrix  
 

The sequence of eigenvalues shown in Figure 1 is typical of a sparse binary matrix : the 
decrease of the values is extremely slow, almost linear after axis number 15. The first 15 
eigenvalues account for 37% of the trace. Each of the remaining axes corresponds 
approximately to 1% of the trace. 

 
Figure 2 shows the "trajectories" of the percentages of successes obtained for each of the 

three previous distances : Usual euclidean distance (square symbols), Global Mahalanobis 
distance (triangular symbols), Local Mahalanobis distance (diamond shaped symbols). 

 
We note that the rates corresponding to learning samples success rates (black symbols) 

increase continuously with the number of axes, whereas those rates corresponding to the test 
samples are almost stabilized beyond 15 axes.  

 
Among the learning sample trajectories, the local Mahal. distance increases vigorously, 

and reaches a level of 70% of successes for 40 axes. Such distance depending upon an 
increasing number of parameters obviously "sticks" to the real data, without comparable 
improvement for the test sample. 

 
The global Mahal. distance is very similar to the usal euclidean distance, although leading 

to slightly better percentages of successes. The situation is far less clear for the test samples. 
One can guess however an average superiority of the local Mahal. distance. 

 
 
Figure 3 is a zoom of the lower part of figure 2, dealing with the three test samples results. 

If we except two isolated points and the interval ranging from axes 14 to 18, the dominance 



of the local Mahalanobis distance is clear.  
 

Figure 2. Learning and Test Sample percentages of successes for Usual, 
Global Mahal. and Local Mahal. distances
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Figure 3. Percentages of successes (Test sample only) 

(usual, local Mahal. and Global Mahal. distances) 
 
The fluctuations, however,  are surprisingly large. We must keep in mind that K 



diagonalizations occur for each value of R. It may happen that for some values of R, the 
instability is created by the smallest eigenvalues βsk (see formula 5) of the local covariance 
matrix of group k computed in the new reduced base. 

 
 
 

3. THE REGULARIZED NEAREST CLUSTER METHOD 
 

This discrimination technique takes advantage of the shape of the swarm of n points in the 
original p-dimensional space. The weakness of the previous assignment rules lies in the 
computation of the distances of points to a unique point for each category, whatever the 
sophistication of the used distance. The new proposed assignment rule will take into account 
the shape of the “sub-cloud” corresponding to each category. 

 
3.1 Basic principles 
 

The regularized nearest cluster method proceeds in four steps : 
 
1) A priori clustering of the whole sample according to the appropriate distances computed 

in the original space (regularization by truncation using principal axes will be dealt with later 
on). 

For this kind of large sparse data, a procedure of "mixed or hybrid clustering" is 
recommended [12]. Let us recall that this technique comprises 4 phases : a) Reduction of the 
number of individuals through a k-means technique. b) Hierarchical classification (using 
Ward's criterion) of the provisional groups obtained. c) Choice of the cutting level of the 
dendrogram. d) Iterative reassignment of the individuals to optimise locally the partition 
defined by the previous cut. 

 
As a result, a "basic partition" with q classes is obtained. 
 
2) A new provisional target variable with qK categories is obtained, for the learning sample 

only, through cross-tabulation of two nominal variables : the basic partition obtained during 
the first step on the one hand,  the initial target variable on the other. The kp centroids of these 
classes are computed and stored. 

 
3) The individuals or objects of both learning-sample and test-sample are then assigned to 

the nearest centroid. In the following examples, the usual euclidean distance is used.  
 
4) Individuals are eventually assigned to the K initial categories to which belongs the 

cluster whose centroid has been selected (since the qK provisional groups are included in these 
K categories). 

 
In practice, the first step directly produces a series of partitions, corresponding to different 

cuts of the dendrogram. 
 
Two parameters play an important role in contributing to the quality of the discrimination : 
 
- The number of classes of the basic partition obtained during the first step, 



 
- The number of principal axes kept to compute the distances. 
 
The choice of the final model depends on these two parameters whose values are 

customized to real situations by maximizing a sample based estimate of the rate of 
successes. 

 
Two series of empirical results tend to prove that the task of determination of these two 

parameters involves a moderate amount of computation. 
 
1) There is a relatively early stabilization of the rate of successes (for the test-sample) 

when the number of axes increases (between 5 and 20 axes, out of 100) for most of our 
examples. 

 
2) The number of classes of the basic partition corresponding to the highest rates of 

successes remains small (less than 10 in general, 4 for our  example). 
 
Although these results need to be assessed by mathematical proof, the order of magnitude 

should prompt more experiments on real data as well as simulated data. 
 
Figure 4 allows one to check a predictable result : The larger the number of classes of the 
basic partition, the larger the percentages of successes on the learning sample. 
 

Figure  4.  Percentages of successes. Regularized Nearest 
Cluster method. Partitions with 3,5,10 classes.
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An increase of the number of classes of the basic partition enhances the quality of the fit of 
the learning sample. This "forced" fit is however unable to seize new structural features that 
would improve the predictive power of the method. Once again, the trajectories of the test 
samples success rates are far from following the same trend. 

 
If we compare, on the same test-sample, the percentages of successes obtained from the 

best method of section 2 (discrimination using a local Mahal. distance) to some of those 



percentages issued from the regularized nearest cluster method, we observe similar 
performances (figure 5). 
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Figure 5. Percentages of successes on the same test sample 

(Local Mahal. distance compared to RNCM with 4 and 8 classes) 
 
 

Up to now, RNCM is carried out using the usual enclidean distance. The good results 
obtained by the local Mahal. distance within the range of the axes 20 - 30 are an incentive to 
experiment with a variant of the proposed NCRM method making use of this distance. 
However, this distance would increase considerably the amount of computation required to 
optimize the parameters q and R (see below). 

 
 
3.2 Determination of the two parameters q and R  
 
The sample-based estimates of the parameters p and R are determined as follows : 
We start from T partitions (partition t has qt classes). This sequence of partitions is not 

nested, since each partition is locally optimized by reallocation of the individuals after the 
cut of the dendrogram. 

 
For each of the m learning samples (m = 30 in the following numerical application), the 

distances of each of the n individuals to the Sqt centroids are computed. 
The whole operation is done for each dimensionality of the subspace : 1,2,3,...R. 
 
Figure 6 shows the average percentages of successes in the case of m = 30 (30 drawings at 

random of test-samples and learning samples). 
 
The maximum dimension is R = 25 (all the nested subspaces spanned by the 2,3,...25, first 

principal axes are considered).  



 
All the partitions with 2, 3,..,8 classes are taken into account, though only a selection of 

them has been represented on the graphical display. 
 
It is satisfactory to note the effective stabilization of the trajectories of both learning 

samples and test samples. 
 

Figure  6.  Average  trajectorie s of successe s percentages for 4 
sizes of the  basic partitions (3,4,5,8 classe s)
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The most interesting results concerns the fact that the number of classes  leading to the 

best efficiency of the test sample (q = 4) is distinct from its analogue of the learning sample 
(q = 8). 

 
For the learning sample, as stated above, the success rate is automatically related to the 

number of classes of the basic partitions. As expected, the test sample behaviour is more 
subtle. Such observation suggests that some important structural features have been taken 
into account by the 4-classes partition . To split or to merge these classes has a negative 
influence on the discrimination power of the method. Such result could be of the utmost 
interest for the user, since it may help to comprehend the mechanism of the discrimination 
rule. 

 
Figure 7 presents a zoom of the success rates corresponding to the test samples only, while 

table 1 contains an excerpt of the numerical results serving as a basis for the selection 
process of the parameters. 

 
The chosen parameters are thus q = 4 and R = 14. This choice is corroborated by the 

general aspects of the curves as they can be observed on figure 7 (regular trends, clear-cut 
separations). 

 
The corresponding rate of successes has the value 42.64. The estimated standard deviation 



of this value is 0.48 ; therefore, we have the approximate confidence interval [ 41.68 ,  
43.59] (p = 0.05), for the rate of successes computed within  a test-sample made of 33% of 
the entire set of  individuals.  

 
This system of test-samples leads obviously to pessimistic estimate of the risk of 

misclassification, since it notably  reduces the size of the learning sample. A series of results 
based on the leave-one-out technique will complement these figures. 
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Figure 7.   Average trajectories (30 test samples) of successes rates 
for RNCM with 4 sizes of basic partitions 

 
 
TABLE 1.  AVERAGE SUCCESS RATES FOR LEARNING AND TEST-SAMPLES 
 
          
             PART 3         PART 4         PART 5         PART 6         PART 8        
 AXES      LS     TS      LS     TS      LS     TS      LS     TS      LS     TS     
 
    2      41.00  39.60   43.31  39.54   44.08  39.51   44.29  39.17   43.88  37.55  
    4      41.15  37.87   42.90  39.04   44.88  38.91   46.47  39.79   48.29  38.76  
    6      43.20  38.57   44.83  38.79   46.76  39.27   47.85  38.36   50.36  38.58  
    8      44.56  39.60   45.93  39.05   47.41  39.17   48.41  38.11   50.40  38.79  
   10      47.78  40.63   49.63  40.90   50.51  40.35   51.24  39.41   52.46  39.44  
   12      48.66  40.43   51.27  42.23   52.49  41.68   53.04  40.72   54.17  40.03  
   14      49.64  41.08   52.36  42.65   53.65  41.63   53.98  40.25   55.44  39.80  
   16      50.12  40.56   52.42  42.16   53.74  41.01   53.78  39.48   56.49  39.98  
   18      51.05  40.88   53.78  42.16   54.71  41.23   55.27  40.50   57.66  40.29  
   20      51.56  40.27   54.01  42.44   55.23  41.34   55.54  40.46   58.37  39.78  
   22      52.16  40.34   54.83  42.55   55.64  41.23   56.42  40.36   58.29  39.50  
   24      52.35  40.40   55.03  42.07   56.05  41.08   57.10  40.79   58.44  39.68  

 
 

Remark 1: A substantial amount of computation can be saved during the determination of 
tables such as Table 1 by storing the array of distances (distances between the n individuals 



and the series of centroids relating to all the basic partitions) and by updating it as the 
number of dimensions increases. It is not necessary to re-compute the whole distances at 
each step. Note for instance that the computation of such table (relating to 30 test-samples) 
is much less costly than the computation needed to obtain figure 2 (which relates to a unique 
test-sample). 
 

Remark 2: A variant of the technique proposed here consists of clustering separately the 
individuals within each category of the learning sample. This procedure has the advantage of  
describing more carefully the density  of each sub-group, using for instance a variable 
number of clusters (and consequently a variable number of centroids) to summarize each 
category. In such case, the number of involved parameters increases, and the sample-based 
estimation of these parameters implies much more computation time, since the clustering of 
the individuals must be performed again for each drawing of the test sample.  
 
 

4. DISCRIMINATING FROM TEXTUAL DATA (The examples data set) 
 

This section aims at presenting the real setting of the numerical example used in the 
previous sections, emphasizing the importance of the processing of large sparse matrices in 
this domain of application. 

 
Discriminant analysis is needed in various domains involving textual data. The most 

classical applications probably concern the problems related to authorship attribution. In this 
context, discrimination is often considered a major objective of quantitative literary works 
(see for instance  [9] ). Discriminant Analysis is often used to allocate texts (books, scientific 
papers, abstracts, in the framework of Automatic Information Retrieval applied to 
documentary databases) or individuals described by texts (Medicine, History, Marketing, see 
also [4]). 

During the processing of sample surveys data, the technique of discriminant analysis 
applied to responses to open questions currently help to the post-coding of these responses (i.e. 
replacing one open question by one or several closed questions), to predict non-responses, to 
assess classifications. Our example pertains to this last category of application. 
 
4.1 Some specific features of textual data. 
 

The chosen basic statistical unit is the graphical form defined as a series of non-delimiting 
characters (blanks, periods, commas...). A single word can generate several graphical forms, 
depending on its case or its gender in the text; a single graphical form can also refer to several 
words. 

One can also define larger units composed of several consecutive graphical forms. These 
units are called repeated segments  [13], [2]. These are sequences of simple forms that appear 
with a frequency greater than a given threshold. Special computational algorithms are able to 
uncover such segments. Evidently, introducing such new units considerably increases the 
number of variables as well as the sparsity of the data matrix. 

 
As usual when dealing with sparse data,  two matrices R and X are involved. For a response 

or an individual  i, row  i  of the matrix R contains the addresses r(i,j) (relative to a 
vocabulary) of the graphical forms (or segments) that constitute the response, while respecting 



the order and the possible repetitions of these forms. From R it is therefore possible to 
reconstitute the original responses integrally. 

Matrix X has the same number n of rows as R but has as many columns as there are 
graphical forms used by the entire set of individuals, that is p columns. At the intersection of 
row  i  and column  j  of X is the number of times xij graphical form  j  was used by individual  
i  in his or her response.  X can easily be constructed from R but the converse is not true: the 
information relative to the order of the forms in each response is lost in X.  

In order to take advantage of the sparsity of X,  the statistical and algorithmic computations 
that involve X are actually programmed with R [10]. The first global diagonalization 
mentionned in section 2.1 makes use of such special algorithms. 

 
Discrimination is usually performed after various selections or groupings : 
 
- Selection of words  using a threshold of frequency : a low threshold will increase once 

again the number of variables and the sparsity of the matrix, but rare words could nevertheless 
be very productive in a discrimination process. 

- Selection of words and segments according to their specificities (only words characteristic 
of certain categories are selected) [11]. 

- Discrimination after grouping of words or segments (see for instance [5], following the 
recommendation of  [8] ). 

Most of these procedures aim at reducing the size of the input data matrix, or at solving ill 
or poorly posed problems. This prior reduction of the data (involving obvious losses of 
information) could be avoided by using  the tools presented in this paper. 
 

 

4.2 The context of the example 
 

The data set serving as example is extracted from an international sample survey 
concerning "dietary culture"  [1] . The questionnaire, containing numerous closed questions,  
comprises also the following  open-ended question : 

"What dishes do you like and eat often? (With a probe: "Any other dishes you like and eat 
often?") 

 This question has been asked in the three cities of Tokyo, New-York and Paris. The 
responses have been given in three different languages : Japanese, English and French. 

 
The sub-sample relating to the city of New-York contains 634 individuals. The global 

corpus of open responses contains 6511 occurrences of 638 distincts words The data 
processing presented here takes into account the 83 words appearing at least 12 times, 
corresponding to 4039 occurrences. This threshold of 12 allowed us to deal with a reasonably 
sized matrix X (634,83) for a methodological study. The statements of section 4.1 prompt us to 
select a much lower threshold. 

 

In the three countries under survey, a general typology of the respondents described by 
their lexical profiles highlights the prominent role of the two variables age and sex, and also of 
the interaction between these two basic variables. But a direct comparison by merging the 
different files is not possible, since the languages (and consequently the basic variables) are 
different. 

 



It has been the task of these techniques of discrimination adapted to large sparse matrices to 
assess, for each country, the predictive power of the raw responses over various socio-
economic characteristics of the individuals. Discrimination is often used in this context to 
validate the patterns discovered through multivariate descriptive techniques. 

 
 
 
5. CONCLUDING REMARKS 
 

The techniques of regularization dealt with in this paper can tackle the worst situations 
from a numerical point of view, since they start iteratively from the principal axes 
corresponding to the largest eigenvalues issued from a singular value decomposition of the 
input data matrix. Such data matrix must be at least of rank one ! This is the weakest 
theoretically possible condition, although of no practical use... 

 
For the understanding of the phenomenon underlying the data set, it seems furthermore 

valuable to obtain simultaneously a good discrimination (with a risk of misclassification 
comparable to the risk provided by the best available blind procedures) as well as a model or 
a relatively parcimonious description of the data : number of dimensions, number of clusters, 
both of these parameters being determined to ensure the best prediction in the setting of a 
sample-based optimization. 

 
In the low dimensional space obtained, marked out by a small number of clusters, it could 

perhaps be easier to understand the reasons why the discrimination  process is working. 
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