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1. Introduction 
 

The present paper contains a survey of some of the most salient results about the links and 
the complementarity between clustering and correspondence analysis (CA) of 
contingency tables. It includes also a presentation of certain new contributions and 
domains of research. 
The practitioners use to complement one approach with the other when a thorough 
exploration of data is needed, since the two points of view may provide quite different 
portrays of data. The involved processes are obviously distinct (projection onto a principal 
subspace on the one hand, grouping of similar categories on the other) but they could lead 
to identical results in specific situations. In more general cases, the parameters they 
produce are not independent. We will precisely focus on this interdependence and these 
specific situations below. 
Two characteristics of CA are in favour of a reconciliation with classification : the 
symmetry of the roles of rows and columns in the process, and the property of 
distributional equivalence (Benzecri, 1973; Escofier, 1978; Gilula, 1986; Greenacre, 
1988), allowing for a great stability of the results when agglomerating elements with 
similar profiles. Agglomerating the rows or the columns of a contingency table is 
"natural" in the sense that it is merely replacing classes by classes (instead of replacing 
individuals by groups, or variables by groups of variables...).  
The questions of clustering in contingency data tables based on grouping of homogeneous 
items are discussed in Cazes (1986), Escoufier (1988), Greenacre (1988), Gilula (1986), 
Goodman (1981), Jambu (1978).  
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2. Some links between the two approaches 
 

One can find a series of theoretical bridges between these approaches, exemplified by 
some particular models. We discuss below a set of such models having in mind the 
following purposes: to unify the previous developments and to propose certain new 
approaches. Let us illustrate this discussion with a numerical example of a symmetric  8 
by 8 contingency table KIJ = (kij) comprising k=640 cases (table 1). The marginals ki and 
kj are identical (equal to 80) in this particular example, but all the results concern as well 
the cases with unequal marginals. 
 

Table 1 
Contingency table KIJ 

 
            COL1    COL2  COL3   COL4   COL5   COL6   COL7   COL8 

 
 LIG1       30     18     12     12      2      2      2      2 
 LIG2       18     30     12     12      2      2      2      2 
 LIG3       12     12     27     21      2      2      2      2 
 LIG4       12     12     21     27      2      2      2      2 
 LIG5        2      2      2      2     24     20     14     14 
 LIG6        2      2      2      2     20     24     14     14 
 LIG7        2      2      2      2     14     14     23     21 
 LIG8        2      2      2      2     14     14     21     23 

 
 

 

The agglomerative clustering methodology based on chi-square distance using a 
generalized Ward criterion (see Benzecri, 1973; Greenacre, 1988; Jambu, 1978), 
agglomerates the elements pairwise, as it is shown on Figure 1.  
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Figure 1 
Sketched dendrogram issued from hierarchical clustering of the (8,8) table KIJ 
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Moving centers (k-means) method based on chi-square distance gives similar results. For 
example, beginning with the two centers corresponding to the elements 1 and 8, we obtain 
easily the 2-class partition presented corresponding to the upper part of the dendrogram 
(cf. Figure1).    
To express both the symmetry and distributional equivalence in a unified form let us 
consider for each i ∈ I and j ∈ J the value  
  qij = (k ∞ kij)/(kikj)  -  1       (i  ∈ I, j ∈ J)  
which expresses the relative increment (or decrement) RIP(i/j) of the probability of row i 
due to the knowledge of column j. Dual interpretation of qij as the relative increment 
RIP(j/i) of the probability of column j due to row i is straightforward. Relative increments 
for subsets are defined in analogous way using the total probabilities (or frequencies). The 
RIP values in table 1 are calculated by multiplying the entries by .1 and substracting 1 
afterwards. Note that we have the two following relationships expressing the classical 
Chi-square X2 as a function of the RIP coefficients :  
 

  X2  = Σ ij  kij  qij    =   (1/k)  Σ ij  ki kj  (qij )2 
 

The RIP concept is useful in many aspects (Mirkin, 1985, 1992). In the present context we 
should point out that the RIP concept underlies the basic reconstruction formulas of CA : 
 

  qij  =  Σh%H µhFh(i)Gh(j)                        (1) 
 

where Fh, Gh are CA  factors corresponding to singular value µh (h∈ H). 
 
 

2.1 A global approximation formulation 
 

Using this concept, the distributional equivalence principle can be specified in a 
symmetric form as follows. In rough terms, the block structure of the coinciding RIP 
values in matrix  Q ={qij} reflects the CA presentation in such a way that the sub-arrays 
(boxes) of the equal RIP values correspond to the sets of the equal row or column-points 
in CA space. This can be expressed also in terms of the equalities (1) using Boolean 
vectors instead of CA factors. Explicitely, let the classes of some partitions {Vs : s ∈ S} 
on I and {Wt: t  ∈ T} on J represent the sets of coinciding row and column-points in CA 
space. The formulas (1) express the principle if H=SxT and Boolean Fh(i), Gh(j) are 
defined for h=(s,t) as follows: Fh(i)=1 iff i  ϖ  Vs and Gh(j)=1 iff j ∈ Wt. This form of the 
principle allows us to formulate the partitioning problem of a contingency table KIJ as an 
approximation problem: to find a pair of partitions, {Vs: s ∈ S} on I and {Wt: t ∈ T} on J, 
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and corresponding values µh for  h=(s,t)  to approximate the RIP matrix Q={qij} , that is, 
to minimize the difference between the left and right parts of (1) (in the Boolean form) 
measured by the weighted least square criterion L2 such that  : 
               L2   =     Σij ki kj    [qij  -  Σh µhFh(i)Gh(j)  ]2   (2) 
(the weight of the  entry (i,j) is to be equal to kikj (Carroll, Pruzansky, and Green, 1977; 
Escoufier, 1988). When the user wants to clusterize only one of the sets, I (or, J) the 
corresponding partition of J (or, of I) consists of the set of singletones. 
Evidently, for Fh and Gh (h∈ H) fixed, the optimal values µh are equal to the 
corresponding RIP values, that is, for each h = (s,t), the optimal value is such that µh = qst. 
It is not difficult to prove also that the alternating algorithm for minimizing L2 is 
equivalent to the chi-square distance moving centers method, and that an agglomerative 
suboptimal algorithm is equivalent to the chi-square distance based agglomerating 
clustering procedure using generalized Ward criterion (Mirkin, 1992). The value of the 
criterion can be expressed through the difference of the chi-square contingency 
coefficients for the initial and aggregated contingency tables:  L2= (X2(I,J)-X2(S,T)). This 
approach can account for various results and findings derived in Benzecri et al.(1980), 
Cazes (1986), Moussaoui (1987), Jambu (1978).     
 
 

2.2 Simultaneous clustering of rows and columns 
 

This approximation clustering approach can be expanded to the problems of finding 
"mixed" clusters containing the rows and columns simultaneously (an approach dating 
back to Hartigan, 1972 ; Braverman et al., 1974; see also Govaert, 1977; Bock, 1979). 
The chi-square distance concept cannot help in this matter, since no satisfactory concept 
exists to measure distance between a row and a column! But we can consider the model 
(1) as a set of approximate equalities with arbitrary Boolean vectors Fh and Gh (and 
corresponding cluster boxes Bh={(i,j) : Fh(i)=1 and Gh(j)=1}) to find out.  
A suboptimal algorithm to fit the model (1) for this case was developed in Mirkin (1992): 
the cluster boxes Bh are separated sequentially maximizing the accounted part of the 
general value of X2(I,J); the values µh are estimated by the RIP values of the cluster boxes 
obtained.  
More explicitely, each iteration h (the index h is omitted below for convenience) aims at 
minimizing the following reduced form of criterion (2) : 
 
                L2   =     Σij ki kj    [qij  -  µF(i)G(j)  ]2   (3) 
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µ, F(i) and G(j) are unknown, whereas the qij are the residuals computed after each 
iteration (for the first iteration, the qij are the initial RIP values). 
The optimal µ for any fixed box VxW  (defined as V = {i : F(i) = 1} and W = {j : G(j) = 
1}) is determined by the weighted average of  qij  computed within the box : 
 
  µ  =     Σi %V Σj %W  ki kj  qij / kv kW 
 

which equals qv W. 
Substituting this value into  (3) leads to the following equality : 
 
                L2   =   Σi %I Σj %J  ki kj  (qij)2  - µ2 kv kW 
 
which shows that minimizing L2 is equivalent to maximizing the following form of the 
criterion, depending on box VxW only : 
 
  g(V,W)  =  µ2 kv kW   =   (Σi %V Σj %W  ki kj  qij )2 / kv kW 
 
To maximize this criterion, the following step-by-step procedure of box generation can be 
performed : each step adds to the box issued from the previous step only one element, a 
row or a column, to maximize the increment of the criterion due to the added element. At 
the first step, two elements are simultaneously selected : a row i and a column j , 
maximizing g({i},{j}) for all the pairs of singletones. The process stops when the 
maximal increment becomes negative. The suboptimal cluster box obtained through this 
algorithm  has the following property (Mirkin, 1992) : For each row i or column j outside 
the cluster box, the absolute value of the relative increments qVj = qjV and qiW = qWi are 
at least twice smaller than the absolute value of the relative "internal" increment   qVW  =  
qWV. 
The residual data in this sequential fitting procedure are obtained through substracting the 
solution provided by the h-th iteration from the residual data of the preceding iteration. 
 
    qij,h+1  =    qij,h   -  µhFh(i)Gh(j)   (i  ∈ I, j ∈ J). 
 
For the first iteration,   qij,1  =  qij            (i  ∈ I, j ∈ J). 
 
Even in the case of overlapping boxes, the initial Chi-square can be partitioned into 
components corresponding to these boxes in order to evaluate the contribution of each 
cluster, and to help fixing the number of cluster (by using traditional values of the 

5 



Seventh International Conference on Multivariate Analysis 
Barcelona Meeting, September, 21 - 24, 1992 
in "Multivariate Analysis, Future Directions, C.Cuadras, C.R.Rao, Eds, North Holland, 1993, p 341-357. 

 

accumulated contributions, or testing the hypothesis of independence for the residual 
data). 
The obtained boxes are shown to correspond to certain fragments of the CA space 
(maximally connected if µh>0, or maximally disconnected if µh<0). In our example, the 
algorithm separates, initially, the singletone boxes {1}×{1} and {2}×{2} (each having 2 
as the RIP value and accounting 7.8% of X2(I,J)), then the pair segments {3,4}×{3,4), 
{5,6}×{5,6}, and {7,8}×{7,8} are obtained sequentially followed by the link boxes 
({1}×{2} and {2}×{1}) for the first two elements. The RIP value for each of these boxes 
is positive (evidently, the values are 1.4, 1.2, 1.2, .8, .8, respectively). Then boxes 
{1,2,3,4}×{5,6,7,8} and {5,6,7,8}×{1,2,3,4} appear having negative RIP value .8. All this 
structure accounts for 95.8% of the X2(I,J). 
 
2.3 An example of coincidence between clustering and C.A. 
 

Unfortunately, the Boolean form of decomposition (1) has no longer the weighted 
orthonormality  properties of the CA factors. But for the symmetric matrices KII (which is 
exactly the case of our example), Benzecri (1973, vol.2, ch.11) has pointed out a situation 
where the discrete orthonormal eigen-functions are relevant.  
 

This author has derived a representation of a binary hierarchy H through a set of 
orthogonal functions allowing to build a symmetric contingency table (through the 
reconstruction formula) whose CA restitutes the  initial hierarchy.  
 

The preceding symmetric (8,8) contingency table KIJ has thus the property of providing 
an exact coincidence between correspondence analysis and hierarchical clustering (using 
the Ward's criterion) in the following sense : each eigenvalue of the CA corresponds 
exactly to a node of the classification.  

Table 2 
 

Eigenvalues issued from the C.A. of KIJ 
 

λ1 = .640   (80 % of the trace)   
λ2 = .090   (11 %)  
λ3 = .040   (5 %) 
λ4 =  .023   (3 %) 
λ5 =  .006   (.7 %) 
λ6 =  .003   (.4 %) 
λ7 =  .001   (.1 %) 
 

 
 

The associated axis of the CA separates the two sets of elements constituting this node. 
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Correspondence analysis of table KIJ leads to 7 clearly separated eigenvalues (see table 
2).  
The sequence of patterns that can be observed in the columns of table 3 (eigen-vectors)  is 
typical of a hierarchical structure : the non-zero coordinates on each principal axis can 
take only two distinct values, opposing two groups of elements. 
 

Table 3 
 

Principal Coordinates issued from the C.A. of KIJ 
 
  

 Axes       1     2     3     4     5     6  
 
  

 ROW1  *  -.80   .42  0.00   .30  0.00   .00 *  
 ROW2  *  -.80   .42  0.00  -.30  0.00   .00 *  
 ROW3  *  -.80  -.42  0.00  0.00  -.15   .00 *  
 ROW4  *  -.80  -.42  0.00  0.00   .15   .00 *  
 ROW5  *   .80  0.00  -.28  0.00  0.00   .10 *  
 ROW6  *   .80  0.00  -.28  0.00  0.00  -.10 *  
 ROW7  *   .80  0.00   .28  0.00  0.00   .00 *  
 ROW8  *   .80  0.00   .28   .00  0.00   .00 *  

 
 
 

The first axis, for instance, opposes (ROW1 ... ROW4) to (ROW5 ... ROW8). The second axis, 
within the first group isolated by axis 1, opposes (ROW1, ROW2) to (ROW3, ROW4), etc.. 
Correspondence analysis performs in this case like a divisive algorithm, working 
iteratively from the upper to the lower level of a hierarchy. 

ROW5 
ROW6 
ROW7 
ROW8

ROW1 
ROW2

Axis 1 

Axis 2 

80%

11%

0-0.8

-0.4
ROW3 
ROW4  

 

Figure 2 
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Planar display of table KIJ through CA. 
 

We notice that the configuration of points in the principal plane of CA (Figure 2) 
highlights only a limited part of the underlying structure, by comparison with the 
dendrogram (also a planar representation) of Figure 1.  
 
 

Figure 2 gives neither pertinent information about the distances between ROW1 and ROW2 
(the corresponding points are superimposed on the plane, suggesting a null distance), nor 
useful information about the distances between ROW4, ROW5, ROW6, also superimposed on 
the graphical display. This shrinkage of distances, easily explained by the geometrical 
properties of the initial swarm of points, should prompt the users to use simultaneously 
the two kinds of methods to obtain a reliable description of the data. 
 
 
2.4 Properties of these "compatible" matrices 
 

The above example concerns the case of a binary hierarchy H, whose each nonterminal 
element h ∈ H can be partitioned in a unique way into two sets a(h) and b(h) belonging to 
H. The orthonormal  set of "3-valued" functions fh is defined as follows: fh(i) equals da for   
i  ∈a(h), -db for i ∈ b(h), 0 for others elements i, where da, db  are chosen in order to make 
the average of fh equal to zero, and the norm equal to 1.  
Evidently, da = [ (k×kb(h)) / (ka(h)kh) ]1/2 , db = [ (k×ka(h)) / (kb(h)kh) ]1/2).  
We say that a square symmetric contingency table is compatible if (1) holds for some 
binary hierarchy H with Fh(i)=fh(i), Gh(j)=fh(j) and some µh>0 (h ∈ H). In general, a 
method to approximate the RIP values with those 3-valued eigen-function decomposition 
can be developed. The method fits model (1) sequentially, each iteration finding a bi-
partition of current set h into two subsets, a(h) and b(h), to minimize the weighted least 
square criterion, or, equivalently, to maximize the "explained" part of the chi-square value 
which is shown to be equal to : 

(µh)2 = (qa(h)a(h)  +  qb(h)b(h) -  2 qa(h)b(h))2.  
This divisive clustering procedure, in our example, leads to the hierarchy of  Figure 1. 
 
 
3. Eigenvalues and indices 
 
3.1 Some inequalities 
 

The largest eigenvalues issued from the CA of a contingency table are greater or equal to 
the largest index corresponding to the last node of a hierarchical clustering of the rows or 
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of the column of this contingency table (using the chi-square distance and the generalized 
Ward criterion to ensure a compatibility between the two techniques). The equality occurs 
for special tables such as the compatible matrices dealt with in the previous section. This 
upper bound for the indices could be derived easily from the above considerations since 
the indices and the eigenvalues appear to be solutions of the same optimization problem, 
with supplementary constraints for the indices. Benzecri and Cazes (1978) have more 
generally shown that the quantity   (λ1 + λ2 + .. λp )  is greater or equal than the sum of 
the p indices corresponding to the p highest nodes of the associated hierarchy (a property 
which can be directly derived from the general criterion (2), where F and G are less 
constrained in the case of CA). Moreover, these authors have produced a counter-example 
showing that there exists no general lower bound for the index corresponding to the 
highest node : one can find distributions of density such that the largest index remains an 
arbitrarily small fraction of the largest eigenvalue. 
 
 
3.2 The case of block-structured contingency tables 
 

The limiting case of multiple eigenvalues λi = 1, (i=1,m) (for the CA of a rectangular 
contingency table) is particularly interesting since it is closely related to the classification 
of rows and columns (the trivial eigenvalue 1 corresponding to a constant eigenvector is 
supposed to be removed beforehand). It is straightforward that such multiple 1-
eigenvalues exist iff there exist a block-structure of the contingency table into m+1 
blocks. (i.e. : iff only m +1 diagonal blocks contains non-zero elements). Surprisingly 
enough, no similar property hold for the most usual agglomerative algorithms. Kharchaf 
and Rousseau (1988,1989) present some counter-examples of bloc-structures in 
contingency tables easily recognised by CA, although undetected by an agglomerative 
clustering technique.  
 
 
3.3 Experiments about the joint distribution of indices and eigenvalues 
 

We give in this section some empirical results about the joint behavior of the indices and 
the eigenvalues issued from the same random contingency table. 
Under the hypothesis of independence (also called homogeneity in the case of 
contingency tables), a series of 1000 pseudo-random independent (8,8) contingency table 
with equal theoretical marginal are generated, according to a multinomial scheme. For 
each generated table, the total number of observations k is 1000. 
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Table 4 

Mean values and standard deviations of the  
Eigenvalues and the Clustering indices. 

(1000 independent  random ( 8 , 8 ) contingency tables C .   For each table C, k = 1000.) 
 

 Identifier              Mean-value              Standard               Standard 
                                                         deviation              deviation  

                                                                                     of the mean 
Eigenvalues  

 
 EV1        *           .02130    *           .00560    *           .00018 
 EV2        *           .01282    *           .00353    *           .00011 
 EV3        *           .00772    *           .00234    *           .00007 
 EV4        *           .00442    *           .00156    *           .00005 
 EV5        *           .00214    *           .00100    *           .00003 
 EV6        *           .00070    *           .00050    *           .00002 
 EV7        *           .00010    *           .00014    *           .00000 

 

Indices of rows (INRi) and columns (INCi) 
 

 INR1       *           .01692    *           .00452    *           .00014 
 INR2       *           .01063    *           .00289    *           .00009 
 INR3       *           .00733    *           .00197    *           .00006 
 INR4       *           .00537    *           .00148    *           .00005 
 INR5       *           .00391    *           .00117    *           .00004 
 INR6       *           .00280    *           .00090    *           .00003 
 INR7       *           .00183    *           .00074    *           .00002 

 
 INC1       *           .01679    *           .00450    *           .00014 
 INC2       *           .01061    *           .00291    *           .00009 
 INC3       *           .00739    *           .00202    *           .00006 
 INC4       *           .00535    *           .00151    *           .00005 
 INC5       *           .00396    *           .00118    *           .00004 
 INC6       *           .00280    *           .00091    *           .00003 
 INC7       *           .00182    *           .00075    *           .00002 

 
 

The 7 eigenvalues issued from the CA of each table as well as the 7 indices of the 
hierarchical classification of the rows and the columns (always using the generalized 
Ward criterion and the chi-square distances) of the same table are computed, enabling to 
estimates the means, variances and correlations relating to these 21 variates. 
Table 4 summarizes the results concerning the means, the standard deviations of the initial 
variables and the standard deviations of the means. 
 

The results concerning the eigenvalues are consistent with some previous approximations 
(Lebart, 1976), since their distribution is similar to the one of the eigenvalues of a Wishart 
matrix (n=7, p=7). The sum  τ of the means of the different eigenvalues equals  0.0492 ; 
the statistics kτ has thus the value 49.2 (no significant difference with the expectation of a 
Chi-square with 7x7 degrees of freedom) 
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The indices corresponding to the clustering of the rows and of the columns are distinct  
for each simulated matrix. The statistical identity of their first and second order moments 
is a  further indication of the consistency of the simulation process. 
As expected, the largest indices INR1 and INC1 are smaller than the largest eigenvalue 
λ1=EV1, whereas the smallest indices INR7 and INC7 are  on the average much larger their 
counterpart. 
 
 

0
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0,015
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Figure 3. Sequences of eigenvalues and indices  
 

Figure 3 shows the compared trajectories of these two quantities, highlighting the smaller 
range of variation of the indices. 
 

Figure 4 below presents the scattering diagram of the joint distribution of the first 
eigenvalue  λ1 = EV1 and the first row-clustering index INR1 both issued from the same 
pseudo-random matrix. The correlation coefficient between λ1 and INR1 is 0.91. (The 
same value is obtained for the correlation coefficient between λ1 and INC1). The 
theoretical constraint  INR1≤ λ1 clearly defines the upper left boundary of the swarm of 
points. 
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  LARGEST INDEX OF CLUSTERING  
 
      %                                                                                      *        *            
      !                                                                                                            
      !                                                                                *                           
      !                                                                            *       *          *            
      !                                                                                *      *                    
 .030 !                                                                        *   *    *                          
      !                                                                         *        *                         
      !                                                                       ***                                  
      !                                                                     **   ***   *                           
      !                                                                       *         *       *                  
      !                                                               *  *  * * *    *    *                        
      !                                                              *  *  * *  * * * *  *    *                    
      !                                                            ** *  * * *                                     
 .025 !                                                          *   *  * * *    *                    *            
      !                                                              *** *** **   * *  *           *  *            
      !                                                       * *****   **  *      * *   *                         
      !                                                     *  * ****** * ****                                     
      !                                                   ** ** ***** *  ***  ** *                                 
      !                                                  ** *  ******   * * * **    *                              
      !                                                 * **  *** ***    * *                                       
      !                                                 ******* * * * *  *  **                                     
      !                                            * * ** ***** ****  ***  *                                       
 .020 !                                          * ************ * *  *      *      *                               
      !                                        ************* * **  * *                                             
      !                                       **************** ** * *  **    *                                     
      !                                    *  *********** ** * *  *                *                               
      !                                    ************** *** ****  *              *                               
      !                                  ************* * *  **     *                                               
      !                                ************** **  **  **       *                                           
      !                              * ****************** ***                                                      
 .015 !                            * ************** ***                                                            
      !                             **************  *  * *      *                                                  
      !                         ***************** * *    *                                                         
      !                        * *************** **    *                                                           
      !                      *** ** ****** *      *                                                                
      !                     *********** **     *  *                                                                
      !                   ******* * *   *                                                                          
      !                    ******* ***  *                                                                          
      !                 *****    ** *  *     *                                                                     
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      !          *                                                                                                 
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      !                                                                                                            
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      !                                                                                                            
      !                                                                                                            
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Figure 4  
Correlation between λ1 = ΕV1 and the first clustering index INR1 

 
 

To study the complex system of relationships between the various indices and the 
eigenvalues, we will visualize the corresponding correlation matrix through a principal 
component analysis (PCA), which will summarize the main observable patterns. 
 
Figure 5 shows the principal plane of a PCA whose the active elements are the 
eigenvalues and the illustrative elements are the indices. A classical size effect (all the 
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coordinates on the first axis are positive) corresponds to the fact that all the involved 
correlation coefficients are positive.  
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Figure 5. Structure of the correlation between eigenvalues and indices  

 
(Principal plane of a Principal Component Analysis of the (1000,7) matrix containing the 1000 

observations of the 7 eigenvalues EV1,...EV7.) 
[ Note that the 7 row-indices INR1, ...INR7 and the 7 column indices INC1,...INC7 have been 

projected afterwards as supplementary elements onto this principal plane] 
 
The first indices are clearly correlated with the first eigenvalues. As mentioned 
previously, the two correlation coefficients between each of the largest indices (INR1 and 
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INC1) and the first eigenvalue take the value 0.91 (the correlation between INR1 and 
INR2 is only  0.80, but these relatively small differences are not visible on the display). 
The positive autocorrelations beween successive eigenvalues or indices entail regular 
trajectories on the plane spanned by the two first principal components, but these 
trajectories diverge for the smallest eigenvalues and indices. 
This pattern established from pseudo-random matrices is an assessment of the intuitive 
experience of the practitioners : on the one hand the upper part of the dendrogram 
provides the user with about the same results than the first axes ; on the other hand the 
lower part of the dendrogram often pinpoints some interesting local properties of the data, 
while the smallest eigenvalues correspond to some unidentifiable noise.  
 
 
4. Some hybrid methods 
 

Two series of works involving simultaneously at different level both CA (or other 
principal axes method) and clustering are briefly mentioned below. 
 
 

4.1 Clustering involving optimal coding 
 

In the case of individuals described by several categorical variables (these variables could 
be measured on nominal, ordinal or interval scales), van Buuren and Heiser (1989) 
propose an algorithm achieving simultaneoulsly a coding of the variable and a clustering 
of the individuals. An alternative least square algorithm is used, starting from a multiple 
correspondence analysis of the data table. 
 
 
4.2 Principal axes method for displaying or discovering clusters. 
 

 Some techniques related to projection pursuit and discrimination can be considered also 
as an intermediate step between the two approaches. 
Let us consider n objects described by p variables (yij is the value of variable j for object i). 

Furthermore, these objects are also the vertices of a symmetric graph G, whose associated 
matrix is M (mii' = 1 if nodes i and i' are joined by an edge, mii' = 0 otherwise). Such 

situation occurs when objects are time-points, geographic areas, or if they are assigned to a 
priori classes. Contiguity Analysis simultaneously uses the local covariance matrix  C (such 
that  cjj'  =  (1/2m) Σi,i' mii'(yij - yi'j) (yij' - yi'j') ) , and the global covariance matrix V. If 

the graph is made of k disjoined complete subgraphs, V is very similar to the classical 
"within covariance matrix" used in linear discriminant analysis, and coincides with it when 
the graph is regular (i.e. each vertex is provided with the same number of edges). The 
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minimization of the ratio: u'Cu / u'Vu   (u being a p-vector) provides then a generalization 
of linear discriminant analysis in the case of overlapping clusters (see for instance Aluja and 
Lebart., 1984). 
Using more general similarity indices in place of the binary quantity mii' allows to define a 

series of indices analogous to those used in Projection Pursuit (see Caussinus, 1992). 
It is easy to derive a contiguity matrix from the basic data array itself: any threshold applied 
to the set of n(n-1) distances or similarities between observations allows to define a binary 
relationship which can be described by a symmetric graph. Similarly, a contiguity matrix 
can be derived, from the k nearest neighbours of each observation. 
The contiguity analysis applied to such matrices (Burtschy and Lebart, 1991) is closely 
related to the techniques proposed by Gnanadesikan et al. (1982), Art et al. (1982). It 
produces planar (or low dimensional) representations which can be viewed as 
compromises between the outcomes of  principal axis techniques (CA or PCA) and those 
of clustering techniques. 
 
5. Complementarity from a practical point of view 
 

Various authors have insisted upon the complementarity between principal axes 
techniques and classification, which concerns the comprehension of the data structure as 
well as the interpretation of the results. Gower and Ross (1969), for example, have shown 
how the drawing of a minimum spanning tree onto a principal plane issued from a 
principal component analysis could enrich the interpretation of the represented distances 
between points. Benzecri et al. (1980) have developed a thorough methodology for the 
conjoint use of CA and hierarchical clustering, comprising various parameters which 
describes the mutual links between axes and nodes.  
CA , like PCA, could entail shrinkages and distorsions due to both the projection onto the 
principal dimensions and the possible lack of robustness of the global fit (sensitivity to 
outliers). It is then advisable to complement it with a classification performed in the 
whole space. The clusters are not only used to mark out the factorial planes by a sample 
of well described areas. Being derived in a much higher dimensional space, they can 
supply elements of information that could have been hidden by the projection onto a low 
dimensional subspace. 

 

A practical issue reinforces this need for both approaches : it is much easier to describe a 
set of clusters than a continuous space. The most significant categories or variables for 
each cluster could be automatically selected, therefore producing a computer aided 
description of the classes, and hence, of the whole space. A series of statistical tests 
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allow to select and to sort (according to the computed levels of significance) the most 
characteristics items for each cluster (see for instance Lebart et al., 1984). . 

 

From a purely computational point of view, when dealing with very large data sets such as 
those provided by survey data files, it may prove efficient to perform a classification 
using a limited number of factors issued from CA to increase the performances of the 
techniques (Morineau and Lebart., 1986). 
 

Finally, the user may wish to discover some unexpected latent factors or some hidden 
existing groups within the data. Although the theoretical models underlying CA and 
classification are seldom referred to by exploratory data analysts, it is clear that each tool 
has its own vocation and idiosyncrasies. Even if the history of statistical applications 
abounds in examples of groups discovered through eigen-analyses as well as latent factors 
discovered through clustering, it  seems wiser to systematically use both techniques. 
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